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We formulate a renormalized running coupling expansion for the fl-function and 
the potential of the renormalized ~4-trajectory on four-dimensional Euclidean 
space-time. Renormalization invariance is used as a first principle. No reference 
is made to bare quantities. The expansion is proved to be finite to all orders of 
perturbation theory. The proof includes a large-momentum bound on the con- 
nected free propagator amputated vertices. 
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1. INTRODUCTION 

We study the renormalization of a massless real scalar field r on four 
dimensional space-time, perturbed by a ~b4-vertex. Its renormalization is 
done by means of a renormalization group transformation Rr, which scales 
by a factor L > 1. The renormalized theory comes as a pair, consisting of 
a/~-function fl(g) together with a potential V(r g), both functions of the 
r g (but not of L), with the following properties: 

(I) V(r g) is of the form 

V(r g)= g ~ d4x r " { - T  r  r -F'~[[ r 4 + O(g  2) (1) 

(II) V(r g) is invariant in the sense that 

(2) 
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where g(L) is the solution to the flow equation 

d 
L -~ g(L)=fl(g(L)) (3) 

with the initial condition g l = g(1). 

We will show that there exists a fl-function fl(g) and a potential V(~b, g), 
both unique to all orders of perturbation theory in g, enjoying these 
properties (and general qualities of a renormalized potential in ~4-theory). 
The assignment g ~ { fl(g), V(~, g)} is called the renormalized ~b4-trajectory. 

The idea of analyzing the vicinity of renormalization fixed points in 
normal coordinates can be viewed as an application of Ecalle's theory for 
general dynamical systems. See the article [EW84] by Eckmann and 
Wittwer and references therein. We will treat perturbation theory in the 
sense of a formal power series. The analytic properties of its Borel transform 
will not be discussed. Work in this direction has been done by Gawedzki, 
Kupiainen, and Tirozzi [ GKT85 ]. We will consider small perturbations of 
a free massless field, in other words the vicinity of the trivial fixed point. 
The perturbation theory will be done inductively as in Polchinski's proof 
of perturbative renormalizability [P84]. Unlike Polchinski we will not 
start from a bare action, and we will not consider renormalization as a 
mixed boundary value problem. 

This paper extends the perturbation theory in [RW96] for the 
hierarchical approximation to the full model with momentum space cutoff. 
We will restrict our attention to the four dimensional case where no 
logarithms of the running coupling appear. The normal form of the fl-func- 
tion is cubic in four dimensions. Renormalization invariance was used as a 
first principle in [Wi96 ], both for a discrete and a continuous renormaliza- 
tion group. The aim of the present paper is to give a short, in the sense of 
formal power series rigorous, construction of a renormalized perturbation 
expansion in the continuous renormalization group. The setup will be close 
to that in [Wi96], with the difference that we will do without normal 
ordering here, and with the difference that we will admit a more general 
fl-function. 

2. RENORMALIZATION GROUP 

We begin on a formal level, which is strengthened as we move towards 
perturbation theory. 
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Let ~b be a real scalar field on four dimensional Euclidean space-time. 
Consider the following renormalization group for potentials V(q~), derived 
from a momentum space decomposition of ( - zJ) - ~. 

Definition. Let R L be the renormalization group transformation 

(RLV)(r = - l o g  f d / I G ( ( ) e x p { -  V(Sz: ~ +()}  (4) 

depending on a scale parameter L > 1, where d/zrL(() denotes the Gaussian 
measure on field space with mean zero and covariance 

r"~ (p) exp( - p2) - exp (  - L  2 p2) (5) 
"-- 2 

P 

and where SL denotes the the dilatation operator 

St .r  (p) = L3~(Lp).  (6) 

Field independent constants are understood to be properly removed. 
Notice that qJ is rescaled with its canonical scaling dimension. The renor- 
malization group transformation (4) is a Gaussian convolution in resealed 
form. 

Concerning the background on the renormalization group, we refer to 
Wilson and Kogut lWK74].  A pedagocical account of the perturbative 
momentum space renormalization group can be found in the lectures by 
Benfatto and Gallavotti [ BG95]. It was applied to the perturbative renor- 
malization of QED by Feldman, Hurd, Rosen, and Wright [FHRW88 ]. 

Proposition 2.1. R L satisfies the semi-group property 

R L o R L, - -  R L L ,  , L, L' > 1, l i m  R L - -  i d  (7) 
L J, 1 

Consequently, the iteration of (4) with fixed L is interpolated by an 
increase of L in one transformation (4). 

Proposition 2.2. The renormalization group 
(RLV)(O) satisfies the functional differential equation 

flow v ( r  L) = 

0 

C~ V(~, L) (8) 
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where 

De(p) = p -~p + 3 ~/(p), ~(p) =exp(_p2)  (9) 

with the initial condition V(r 1 ) = V(r 

The continuous renormalization group was invented by Wilson 
[WK74]. A review of its applications was given by Wegner [We76]. Its 
value in perturbative renormalization was discovered by Polchinski [ P84 ]. 
Functional differential equations for interpolated Gaussian convolutions 
are also used in the cluster expansion of Glimm and Jaffe [ GJ87]. 

An aim of renormalization theory is to construct renormalization 
group flows which remain finite as L T oo. A way to proceed is to look for 
quantities which are independent of L. 

D e f i n i t i o n .  A scaling pair is a fl-function fl(g) together with a 
potential V(r g), both depending on a coupling g but not on L, such that 

V(~, L )=  V(~, g(L)) (10) 

satisfies (8) for any solution g(L) of the ordinary differential equation 

d 
L ~ g(L) = fl(g(L)) (11) 

A scaling potential is its own renormalization image in the sense that 

(R~ v,,)(O)= v,(L)(O) (12) 

where g(L) is the solution of the one dimensional flow equation (11) to 
the initial condition g(1)= g~. In view thereof, g(L) is called a running 
coupling. 

Proposition 2.3. A fl-function fl(g) together with a potential 
V(r g) is a scaling pair if both together satisfy the functional differential 
equation 

a _  {fl(g,-~g (D~, ~'f-~)} V(~, g) 

t~, C 5 V(r g ) -  5 V(~, g), C~-~ V(r g) (13) 
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We will restrict our attention to Euclidean invariant even potentials. 
Let V(q/, g) be given by a power series 

1 
V(~, g ) =  Z (2n}' Y (2R)4""f  {2gj4 (2R)4~ P, 

n=l " i--1 

x f f ( - p l ) . . .  ~(-Pz- ,)  ~ P, ~'z,(Pl .... , P2,, g) (14) 

in ~. The question of its convergence will be left aside. Let us instead iden- 
tify V(~, g) with its formal sequence of vertices V~(p~ .... , Pz,,, g). Vertices 
will be restricted to the hyperplane of total zero momentum. They can then 
be represented as 

2n--1 / 
P'z.: PI,..., Pz.-1,  - ~ P,, g = ~'z~(Pl,-.., Pz~-1, g) (15) 

i------1 

Proposition 2.4. A fl-function fl(g) together with a potential 
V(q/, g), viewed as a formal power series in q/, is a scaling pair if both 
together satisfy the system of integro-differential equations 

O 2,,-1 O } 
fl(g)'~g + Z P, "~pi - 4  + 2n P2,,<P,,..., Pz,,-,, g) 

I 

f d*q ~(q)~"2(,, 1)(Pl P ~ I  q , - q , g )  = (2n)4 + ,..', _ ,  

)[ _ 2n C P, P'z~(Pl,..., Pz,,,-1, g) 
==1 2 m -  1 i=1 

x P2(,,-,,,+1) P ~  ..... Pz.,-1, Pi, g (16) 
i - -  1 ~ 2 n - !  

where [ �9 ]%,_~ denotes the symmetrization in Pl,..., Pz,-1.  
The constant 4 - 2 n  is called the scaling dimension of a vertex. 

Furthermore, vertices are called relevant, marginal, or irrelevant when their 
sealing dimension is positive, zero, or negative. 

3. q)*-THEORY 

The non-irrelevant couplings of V(~, g) play a special role and deserve 
their own names. Let/t(g),  r and 2(g) be defined as 

0 ~ 
/~(g)= ~'2(0, g), ((g)=~(p2)v ~'2(P, g) , 2 (g )=  V4(0, 0, 0, g). (17) 

p-----O 
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A canonical choice of g in ~b4-theory is the value of the quartic vertex 
at zero momentum. We prefer a slightly more general definition. 

Definition. Let 2(g) be a given formal power series 

oo g r  

2(g) = g + ~ ~ ~(r) (18) 
r---~2 

in g + g2•[[g]  ]. 

The normalization 2(1)= 1 can always be achieved by a rescaling of g. 
The choice 2 (~) =0,  r > l ,  means selecting the ~b4-coupling as expansion 
parameter. Other choices serve to bring the fl-function to a standard form. 
The cubic normal form will be discussed below. Any choice will do for the 
moment. 2(g) will now be assumed to be fixed. 

We then ~xpand both the fl-function and the vertices into power series 
in g, 

oo gr ~(r )  

/~(g)= Z Z, r - -1  

,.., oo gF 

v~,(pl .... , p ~ - ~ ,  g ) -  2 ~. ~'g~(p, .... , p ~ - l )  
r - - I  

(19) 

(20) 

Power series expansions for the couplings (17) are included. All of them 
will be treated as formal power series in g. 

Proposition 3.1. A fl-function fl(g) together with a potential 
V(q/, g), viewed as formal power series in g, is a scaling pair if both 
together satisfy the system of integro-differential equations 

Z Pg K U - 4 + 2 n + r f l  (') V~),,(Pl, ''', P2,,-1) 
g--I 

. + l  
-2,, )(P 1 ,..., P2,,- l) 

s - -2  

f d4q p(r) 
+ ( 2 ~ )  4 ~-V(q) 1 ) ( e l  P2n  1, q,  - - q )  --2(n + ~"'~ -- 

r 1 2n ~ Pi ~ '~ (P l ,  P2,,,-x) oo.~ 
s=l ,,,=1 2 m - 1  i= 

if(r-s) (21) 
X - - 2 ( n - - r e + l )  P ~  .... , P 2 n - 1 ,  P i  

i--- 1 ~2n-i 
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To obtain a mathematically well defined problem, we should say what 
kind of solutions are looking for. 

Definit ion.  Let V be the space of vertices ~'~(p~,..., P2,-~) with 
the following properties: 

(I) (Bose-symmetry) 

P~)(P,<,) ..... P,<2,)) = ~'~(P,,..., P2,), 7~ ~ ~ 2 n  (22) 

(II) (O(4)-symmetry) 

["~)(Rp, ..... Rp2, , )  = ["~(p, ..... P 2 , , - , ) ,  R~O(4)  (23) 

(III) (Smoothness) 

~,<,-) ~ ~oo x .. x ) 2n ( R 4  " [1~4 (24) 

(IV) (Large momentum bound) 

tt0  ' 2 ttoo, 

{ ( = )} p~,-,'~• •  [ O ~ ' ~ ) ( P , ,  ..., P2,-~)I exp - e  ~ p2~ < ~ ,  
(p! ..... "'" i = 1  

0 < / ~ <  1,  0f.E [ ~ 4 X  " ' "  X [ ~  4 (25) 

(V) (Connectedness) 

~'~2(P l,..., P 2 , - l ) = 0 ,  n > r + 1 (26) 

(VI) (Coupling) 

~'(4r)(0, 0, 0) = 2 <r), r > 1 (27) 

(VII) (Order one) 

~.(2~)(p) =/t<~) + (<l)p2 

~'~41)(Pi, P2, P3)=  1 

.(l)t .. ) =0 ,  n > 2 2n t / / 1  ,'"~ P 2 n -  1 

(28) 

(29) 

(30) 

The properties (I), (II), (III), and (IV) are appropriate for ~b2~theory, 
with any N > 1, in this setup. The properties (V), (VI), and (VII) 
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distinguish ~4-theory. See also Polchinski [P84] and Keller, Kopper, and 
Salmhofer [ KKS91 ].2 

T h e o r e m  3.2. (A) There exists a unique scaling pair in V, given by 
fl-function fl(g) together with potential V(~, g), both viewed as formal 
power series in g, whose vertices P'~)(Pl,..., P2~-l) have the properties 
(I),..., (VII). It is called the renormalized ~b4-trajectory. (B) The fl-function 
of the renormalized ~4-trajectory is given by fl(g)= (-3/(4zr) 2) g2+ O(ga). 
The running coupling g(L) is therefore asymptotically free in the infrared 
direction. 

Outline of the Proof. The proof is an induction on r. The induction 
step r -  1 --, r consists of a sub-induction n + 1 --, n, which goes backwards 
in the number of legs. We compute P'~)(Pl,...,P2,,-1) in the order 
r + 1, r,..., 1. When coming to the case n = 2, we first compute fl(') and 
thereafter P~')(p~, P2, P3). In the case n =  1, we first compute the mass 
/z (') - F'~2")(0), then the wave function ( ( ' -~ )=  (t3/t3(p2)) P'(2"-l)(p)lp~_o, and 
thereafter P'(2")(p), except for (('). Each of these steps will be shown to be 
both well defined and to yield a unique solution. 

4. PROOF OF THE THEOREM 

To first order, (21) simplifies to 

{ ~ - ~  a /~t~)} " t~)  ) 
Pi ~pi - 4  +2n + V2,,(Pl,..., P2,,-1 

f d4q C'(q) ~,(1) 
= - -  - - 2 ( , ,  l ) ( P l  P2, ,  X q , - - q )  

t J 'e~z "4 + ' " "  - ' 
(31) 

Lemma 4.1. The first order vertices, given by (28), (29), and (30), 
satisfy (31 ) if and only if 

- 1  
flt~) =0,  ,u ~) = ~  2(4~z) 2 (32) 

The first order coupling ((~) is a free parameter. 

2 The authors use a cutoff function with compact support. The large momentum bound is then 
unneccessary as all loop integrals extend over a finite domain. 
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Proof. For n = 2, (29) and (30) satisfy (31 ) if fl(1) = 0. For n = 1, (28) 

and (29) satisfy (31) i f  

p(1)_ -- 1 d4q 
2 ~ ~'(q) (33) - 

This integral is convergent and evaluated to (32). II 

p(~) is a normal ordering constant for the first order quartic vertex. ~(1) 
is better thought of as a second order quantity. Its value will be computed 
from a second order equation. 

Hypothesis. Suppose that we have determined all coefficients fl(s) 
and all vertices ~'~(Pl,.-., P2,,,- 1), for 1 ~< s ~< r -  1 and 1 ~< m ~< s + 1, 
except for the coupling ((r-s). Suppose further that we have determined 
V'~(Pl,..., P2,,-1), for n + 1 ~<m ~< r + 1. Suppose that all vertices, deter- 
mined so far, have the properties (I) .... , (VII). We proceed with the com- 
putation of ~'(~(p~ .... , P2,,-1) under these assumptions. 

To save space we write 

s = 2  

d4q ~,(q)p(,) 
+ ( 2 1 r ) 4  -2( ,+t)(pl  ..... p2~_i, q, - q )  

_r~l(~) ~ ( 2n )[~(2,,,-1 ) 
�9 =I ,.=I 2 m - - I  i~i Pi 

fir(r-s) x ~ ' ( ~ ( p ~  .... , p ~ , , - ~ )  - 2 ( . - . , + ~ )  

x P2=,..., P2,,-1, Pi (34) 
i--- 1 ~2n- !  

for the right hand side of (21). 

Lemma 4.2. The integral in (34) is convergent. The differential 
vertex given by (34), has the properties (22), (23), (24), (25), and (26). 

Proof. We prove the large momentum bound (25) for the case of no 
momentum derivatives. Use part of the expontential decay of C(q) for an 
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~r(r) Loo,,-bound on -2O,+l)(P~,...,P2,,-1,q,-q). Put an L~-bound on the 
remaining one loop integral. The result is an estimate 

,1(;) 
I I R ~  11 oo, ~ ~< ~ I//(~)1 II gZ."r-~ § II oo, ~ + 

$-----2 

CO ~- ( r )  II 
--2(n + e (1 - 2e) z I! 1) oo, 

+ II - , ( . _  m + ~)II oo.. s"*'l m----I 2 m - 1  II z,.lloo,~ (35) 

where Co is a constant, independent of r and n. Momentum derivatives are 
distributed on all factors, which are then estimated along the same lines. 
The other assertions are elementary. II 

Therefore, we have a well defined first order partial differential equation 

,=1 p i m p  - 4 + 2 n  ~'~)(Pl .... ,Pz , , -~)=K~)(Pl  .... ,Pz,,-1) (36) 

for the vertex labelled by n and r. The perturbative scaling dimension is 
4 - 2 n ,  independent of r, whence flt~)= 0. The induction is put in such an 
order that the right hand side of (36) is known from the previous work. It 
is directly integrated in the irrelevant case 4 -  2n < 0. 

Lemma 4.3. For n > 2, (36) has a unique solution with the proper- 
ties (22), (23), (24), and (25). It is given by the convergent integral 

f~ dL ~ Lp2,, ) ~'~)(P, .... , P2n - l )=  --~ t - 4 + 2 n  K ~ 2 ( L p l  .... , --1 (37) 

Proof. Equation (36) is equivalent to 

d 
L~--s {L -4+2" ~'~)(Lpl,...,Lp2,,_,)} =L-4+2nI~(:[n)(Lpl,...,LPzn_,) (38) 

which is integrated to (37). The difference of two solutions to (38) satisfies 
the homogeneity condition 

d 
L ~ { L-~  + 2- ~ ~ , ~  Lp2._ )} = 0. -2n~ ,Lp l  ,..., 1 (39) 

Regularity at P l . . . . .  P2n-1 = 0  excludes solutions thereof other than 
zero. Therefore, (37) is unique. The other properties are obvious. II 
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The irrelevant part of the potential has thereby been determined. (37) 
is a recursion relation for the irrelevant vertices. Notice that (37) evaluates 
to zero in the case n > r + 1. Therefore, the property (26) iterates to the 
next order. 

L e m m a  4.4. For n > 2, the vertices given by the integral (37), are 
independent of ((r-  1). 

Proof. The differential vertex (34) is a linear function of ((r-1)with 

~ ( ( r -  1) 
~ ( r ) l  ) 
""  2n~ ,P l  , '" ,  PEn- 1 

_ 2  ( r ) (21)  ((1 i (I'(1) + >P~) p~ ~' '  

- 2 ( ~ ) ( ~ )  C(p~ + P2 + P3)(PI + P2 + P3)2 ~,,,2 (40) 

zero for n >/3. The assertion follows by induction on n. I 

We come to the non-irrelevant cases. We cannot integrate the differen- 
tial equations (21) for the quadratic and the quartic vertex directly to (37). 
The non-negative scaling dimension, 4 - 2 n  >10, causes a divergence at 
L = 0. This problem is cured by a Taylor expansion with remainder. 

Consider first the quartic vertex. The differential equation (38) for the 
quartic vertex is 

d 
L-dE ~'~'(Lp,, Lp~, Lp~) = ~:~">(Lp,, Lp~, Lp~) (41) 

Let us separate the coupling 1 (r) from the quartic vertex according to 

d 
~"(4r)(P~, P:, P3)=- 2(r)+ dL ~ ~'(4r)(Lp~, Lp2, Lp3) (42) 

Recall that we have fixed 2 (r) by definition of g. Evaluate (41) at L = 0, to 
conclude that the differential quartic kernel has to vanish at zero momentum. 
This condition determines fl(r). The Taylor remainder can be computed from 

d } d - d Lp:,Lp,) L ~ +  l ~ V~">(Lp,, Lp:, Lp~) = ~  R~r)(Lp,, (43) 



940 Wieczerkowski 

obtained by taking one L-derivative of (42). The gain of one L-derivative 
is thus one unit of scaling dimension, whereupon we are back in the irrele- 
vant case,  

Lemma 4.5. 
only if 

The differential equation (41) has smooth solutions 

RT(0, 0, 0)=o (44) 

This condition is fulfilled if and only if 

$ = 2  

-1- f (27t)4 d4q" ~(q) ~'t6~ 0, 0, q, q ) - , =  1 2 /its)2 tr-s) (45) 

where 2t 1) = 1. 
I cannot resist from computing the second order coefficient fit2) at this 

instant. The six-point-vertex in second order is computed to 3 

I1 -- e-(Pt +,,,2 + p3 )2 ] 
~'(62)(Pl ..... P5) = - 2 0  ( P ~  P2 + P3) 2 ~5 (46) 

by means of (37), with r = 2 and n = 3. The integral in (45) of it is elemen- 
tary. Using the value (32) of/z (1) it follows that 

- 6  
fit2) _ (47) 

(4n) 2 

which is the expected result. The negative sign has an important conse- 
quence. It tells that the flow on the renormalized ~b4-trajectory at weak 
coupling is asymptotically free in the infrared direction. 

k e m m a  4.6. (A) The differential equation (43) has a unique solu- 
tion with the properties (22), (23), (24), and (25). It is given by the con- 
vergent integral 

f ~ - d L ' L ,  d ~ d ~..(4r)(Lpl Lp2, Lpa)= ~ Kt4~ L'p2 L ' p )  d--L ' L' - ~  1, , 3 (48) 

3 Consequently, P~2)(0, 0, 0, q, - q )  = - 8  - 12(1 -e-q2/q2). 
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(B) The differential equation (41) has a unique solution with the 
properties (22), (23), (24), and (25). It is given by the convergent integral 

~ dL 
V(r)(Pl, P2, P 3 ) -  2(r) + -L- R(r)(Lpl , Lp2, Lp3) (49) 

Proof. The proof of (A) is the same as that of (37). One L-derivative 
is just enough to fall into the case of negative scaling dimension. Con- 
cerning (B), we notice that the integral (49) converges because 

R (; ) ( L p  ~ , L p  ,_ , L p  ~ ) = O ( L ) (50) 

for all (Pt, P2, P3) eR4x  R4x R4 due to the condition (44). The large 
momentum bound on (49) follows from the estimate 

II Vtl)ll oo, ~ I~(')1 + - -  
e e t - - X  /~----1 

o ~,i, ) 

00 ,8  

(51) 

where Cx is a constant which is independent of r. The large momentum 
bound on the momentum derivatives of the quartic vertex follows from 
similar estimates. The other assertions are obvious. II 

Notice that the large momentum bound is not uniform in e. This is the 
price for the Taylor expansion. We then come to the quadratic vertex. Its 
personal differential equation reads 

{d } L -d-L- 2 ~"(')(Lp) = K(2~ (52) 

We represent it by a Taylor formula of order two with remainder. Because 
of Euclidean invariance, we have that 

P(;)(p) = z( ' )+ r +~  dL(1 - L) 2 d3 ~'(2 ~) (Lp) (53) 

We follow a similar procedure as in the case of the quartic vertex. The 
Taylor remainder is computed as solution to the differential equation 

I d t d3 d3 L -dZ + 1 - ~  ~"(~ Lp ) = - ~  K(z')( Lp ) (54) 

Three L-derivatives have brought us back to the irrelevant case. 
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Lemma 4.7. 
(53) only if 

The differential equation (52) has smooth solutions 

0 
- 2/~r = R~2")(0). 0 = 0(p2 ) R ~2")(P) 

p2-- 0 
(55) 

These conditions are fulfilled if and only if 

(r) ._~ s=2 

~ r~l  
f d4q ~(q) P~")(O,q, q)+2 (;),'~','"-") 

(2/~) 4 s = l  
(56) 

and 

~(r -  1) = -1  

s = 3  

C3 d4q ~ 
f C(q) V~4~)( q , - q )  (2~)4 P' c3(p 2) 

r~2 ( r ) (  2 ) } 

,-i s I 

p2----O 

(57) 

The order r wave function ~'~) is a free parameter. 

Notice that both p(o and ~ - 1 )  are finite numbers. The integrals in 
(56) and (57) are convergent. Notice further that/1 ~) as given by (56), is 
independent of ff(~-1). The remaining work is easily put to order. 

[ .emma 4.8. (A) The differential equation (54) has a unique 
integral with the properties (23), (24), and (25). It is given by 

d 3 f f- dL' L' d3 
dL 3 V~r)(LP)= L--;- ~ R'~")(L'P) (58) 

(B) The quadratic vertex assembled through (53), is unique up to the 
parameter ~r). For any finite value of ~r), it satisfies the properties (23), 
(24), and (25). 
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Proof. (A) is another application of the integral (37). (B) is put 
together from (A). The large momentum bound on the quadratic kernel 
follows from 

C2 I~(r) C3 
II vt;)ll + - -  I+ oo, e /~ 7 a(p'-) 

0(3, 8 
(59) 

with some constants C2 and C3, both independent of r. Similar estimates 
hold for all momentum derivatives. II 

The quadratic remainder depends on ((~-~) but not on ~(r) The 
estimate for the quadratic kernel is valid for any finite value of ((r). 

I n d u c t i o n .  We have shown that all assumptions of the induction 
hypothesis are valid to order r if they are valid up to order r -  1. Since they 
are fulfilled to order one, they iterate to all orders of perturbation theory. 
The proof is complete. 

5. 13-FUNCTION 

The fl-function transforms under reparametrizations as a vector field. 
Consider reparametrizations of formal power series. It follows that fl(2) and 
fl(3) are universal, i.e., are not changed under reparametrizations. The other 
coefficients are not universal. We have showed that a fl-function with finite 
coefficients exists for all choices of 2(g). It is straight forward to determine 
the reparametrisation inductively order by order which brings all higher 
coefficients fl(r), r > 3, to zero. This is a canonical fl-function for the renor- 
malization group as a dynamical system. There is a direct implementation 
of this idea. Instead of imposing a condition on 2(g) at the beginning we 
could have imposed a condition on fl(g), saying that it should be exactly 
cubic. Recall that 2 (1) was normalized to one. It turns out that 2 (2) can 
always be reparametrized to zero for the cubic fl-function. Equation (45) is 
now used as follows. The second order equation determines fl(2), the third 
order equation determines fl(3), and the order r + 1-equation, r >  3, deter- 
mines 2 (r). Again all coefficients follow from convergent integrals and are 
hence finite. 

6. CONCLUSIONS 

The renormalization of Euclidean quantum fields to all orders of per- 
turbation theory has been streamlined considerably by means of the renor- 
malization group. We mention the work of Callan [C76] (using the field 
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theoretic renormalization group), Gallavotti [ G85 ], and Polchinski [ P84 ] 
(using Wilson's renormalization group [WK74]). We also mention the 
subsequent contributions of Lesniewski [L83], GaUavotti and Nicolo 
[ GN85], Hurd [H89 ], Keller, Kopper, and Salmhofer [KKS91 ]. 

The recursion relation furnished by (37), (45), (48), (55), (56), and 
(57), is the most direct renormalization scheme known to me. In the 
language of dynamical systems, we are computing an invariant curve in the 
center manifold of the trivial fixed point, whose tangent at the trivial fixed 
point is a (normal ordered) ~b4-vertex. 

The renormalization group transformation (4) is a Gaussian convolu- 
tion in rescaled form. An intrinsic scale is missing. When applied to a 
description of elementary particles, this scheme requires an additional 
datum: a renormalization scale. We have used a dimensionless formalism 
where all quantities are expressed in units of this renormalization scale. 

It remains to be seen whether renormalization invariance is a solid 
starting point for non-perturbative studies. 
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